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Abstract. A unique class of solutions of the classical spin fluid with zero pressure is 
obtained. The spin density vanishes at the boundary of the fluid sphere and the g,, and 
their derivatives satisfy continuity conditions with the exterior metric. 

1. Introduction 

In an interesting review work, Hehl et a1 (1976) have discussed a generalisation of 
Einstein's gravitational theory in which the spin of matter, as well as its mass, plays 
a dynamical role. The spin of matter couples to a non-Riemannian structure in 
space-time, Cartan's torsion tensor. It is pointed out there that one can always rewrite 
the Einstein-Cartan equations such that the torsion effects are included in the energy- 
momentum tensor of matter. In this formalism the classical spin density, which is 
related algebraically to the torsion tensor, behaves as a repulsive field in a manifest 
way. Unlike the electrostatic field, it contributes negatively to the energy-momentum 
tensor. 

Following this approach of Hehl et al, Prasanna (1975) has constructed some 
solutions of the Einstein-Cartan equations with reference to the static spherically and 
cylindrically symmetric perfect fluid. In a recent work, Som et a1 (1982) have shown 
that one can use the known solutions of the Einstein equations to obtain the solutions 
of the Einstein-Cartan equations for a static perfect fluid, irrespective of any symmetry. 
Som and Bedran (1981) have constructed a special class of static solutions of the 
Einstein-Cartan equations with reference to a fluid with zero pressure. 

In this paper we have studied the equilibrium distribution of a dust sphere with 
the spins of the constituent particles aligned along the radial directions. The number 
of independent equations is three, with four unknowns. To have the system well 
determined one imposes in general a coordinate condition which has no invariant 
significance. In the present work the solution is obtained by imposing a coordinate- 
independent condition on the system. 

2. The Einstein-Cartan equations 

The field equations in the Einstein-Cartan theory are given by 

(2.1) R ' , - L  I SS i jR = - 8 ~ t ' j ,  
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The constants a, 6, A and B can be obtained from boundary conditions. Since the 
torsion does not contribute outside the sphere, the metric is represented by the 
Schwarzschild vacuum solution in the isotropic coordinates 

dt2 (3.8) 
(1 - m/2r12 
(1 + m/2r12 

(dr2+r2d02+r2sin20 d42)+  

where m is the Schwarzschild mass. With this we use the boundary conditions at r = ro 

(3.9) 

(3.10) 

From (3.9) we get 

a = (1 + ~ / 2 r ~ ) - ~ ,  b = m/2ri(l+ m/2r0)-~, ( 3 . 1 1 ~ )  

and from (3.10) we get, using (3.11a), 

(3.11b) 

Since -16.rr2K2<0 we are faced with an interesting situation: one can consider 
a static spherical dust distribution solely in equilibrium under the influence of the spin 
of the constituent particles. The spin density is given by 

16.rr2K2=-[4/(A+Br2)] la(Ba -2Ab)+br2(Ab -2Ba)l. (3.12) 

For 2ro > m > ro we have 

4.sr2K2>0 a t r = O  (3.13) 
and 

4.sr2K2 = 0 at r = ro (3.14) 

The proper density p of the dust distribution is given by 

8 ~ p  = 12ab +4a(2Ab - B a ) / A  a t r = O  (3.15) 

and 

8 ~ p  = 12ab at r = ro. (3.16) 

The mass density as well as the spin density is maximum at the origin of the isotropic 
coordinates. While the spin density vanishes at r = ro, the mass density assumes a 
finite value. 

4. Discussion 

We have obtained the conformally flat solutions of the Einstein-Cartan equations for 
a static dust sphere. The conformal solution is possible due to the fact that the 
Einstein-Cartan equations reduce to the Einstein equations with the modified density 
and pressure. The interesting feature of the solutions is that the equilibrium configur- 
ation of a pressure free fluid can exist under the influence of the spins of the constituent 
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particles. If we compare this result with the static flat solution of a charged dust 
sphere, one finds that while the contribution of the electrostatic field to Tg is positive, 
that of the classical spin density is negative. The repulsive field of the classical spin 
density gives rise to negative energy density. As a result, a higher density of matter 
can be in equilibrium for a given value of the radial coordinate under the influence 
of torsion and spin. 

Acknowledgment 

We are grateful to Dr A Banerjee for his stimulating discussion. We also acknowledge 
gratefully financial support from the FINEP and the CNPq of Brazil. 

References 

Banerjee A and Som M M 1981 Prog. Theor. Phys. 65 1281 
Hehl F W, von der Heyde P, Kerlick G D and Nester J M 1976 Reo. Mod. Phys. 48 393 
Prasanna A R 1975 Phys. Reo. D 11 2076-83 
Som M M and Bedran M L 1981 Phys. Rev. D 24 2561 
Som M M, Bedran M L and Amaral C M 1982 Prog. Theor. Phys. 67 No 2 


